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Abstract. An inversion method for plasma velocity determination was developed under the assumption of
axial symmetry of plasmas. The specific right-hand side of equation (9) allows one to use experimental
data without the need of differentiation which causes substantial reconstruction errors. The problem was
formulated in the vorticity approach, and then Helmholtz’s decomposition theorem for vector fields was
used. Numerical simulation results for the algorithm verification, and real experimental data were applied
for determination of radial velocity distribution.

PACS. 07.05.Tp Computer modeling and simulation – 02.60.Cb Numerical simulation; solution
of equations – 02.30.Zz Inverse Problems – 52.70.Kz Optical (ultraviolet, visible, infrared) measurements

1 Introduction

Plasma emits radiation over a broad frequency range.
Characteristics of the radiation are related to plasma pa-
rameters then may be applied for diagnostics [1–4]. The
methods of diagnostics using the radiation emitted by
atoms and ions are based on the relationship between the
line intensity and profile on the one hand and plasma pa-
rameters on the other. These methods are quite attrac-
tive since they do not introduce any perturbations into
plasma. Though such diagnostics represent a major source
of plasma information, the principal difficulty bound up
with the application of these methods consists in the in-
terpretation of the measured radiation characteristics. To
obtain data on the spatial distribution of the radiation
power, one usually measures the radiation intensity at dif-
ferent locations on the surface and along different paths,
with subsequent solution of the integral Abel or Radon
equations thus obtained [4–7]. In presence of plasma mo-
tion, however, neither Abel inversion nor scalar tomog-
raphy methods may be used directly because the emis-
sion of any given wavelength depends on the orientation of
the observation line [8,9]. This paper describes a method
of 1-D tomography reconstruction for torus plasma diag-
nostics — mainly a visible light tomography which em-
ploys the plasma line spectrum. The numerical method
for vector tomography has been developed to be applied
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to axial symmetry plasma measurements to extract the
Doppler shift of spectral lines. Our merging device TS-3
can produce one or two spherical tokamaks of major radius
of 0.2 m and aspect ratio of 1.2–1.9 inside its cylindrical
vacuum chamber having the length of 0.99 m and the di-
ameter of 0.75 m. The spectrum line emission of various
impurity species was measured by detectors located out-
side the vacuum vessel.

In the first part of this paper, we intend to show how
the vector tomography equation can be derived for spec-
troscopic measurements. Parts two and three describe the
mathematical method for solving the vector tomography
problem, computer simulations and computation of real
experimental data. Under the restriction that V is diver-
genceless (divV = 0) in a bounded region, it is shown that
the vector reconstruction problem is solved uniquely [11].

2 Inversion of Doppler spectroscopy data

Under the conditions that self-absorption and refraction
may be neglected, the intensity of radiation from the
plasma I

ξ
(ν′;u) can be found simply by integrating the

power emitted along the line of observation L(u, ξ) (see
Fig. 1) [8–10]:

Iξ(ν′;u) =
∫

L(u,ξ)

ε(ν′;x,η) dl

=
∫
R2

ε(ν′;x,η)δ(u − x · ξ) dx, (1)
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Fig. 1. The scheme of data registration in the spectroscopic
experiment. The position of chord-lines of observation is de-
fined by the vector ξ and by the distance u = OA, ξ · η = 0.

where the unit vector ξ defines the position of line ob-
servation, and the unit vector η is directed along the
observation line. The ε(ν′;x,η) is the local emissivity pro-
file. In special cases, when the particle velocity distribu-
tion is Maxwellian, the Doppler frequency shift results is
a Gaussian line profile

ε(ν′;x,η) =
ε0(x)√

2π∆ν′(x)
exp

(
−(ν′ − ϑ)2/2∆ν′2

)
, (2)

where ϑ = ϑ ·η is the normalized Doppler frequency shift
of the spectral line, ϑ = V (x)/c is the dimensionless ve-
locity field, ν′ = (ν − ν0)/ν0 is the normalized frequency,
ε0(x) is isotropic emissivity, and ∆ν′ is the line width.
Nonetheless, in the general case, the measured signal (1)
along an observation line is not Gaussian and depends on
the direction of observation at a given wavelength. There-
fore, equation (1) cannot be directly inverted either by
Abel’s or by scalar tomography techniques [8]. However,
some information can be obtained by integrating the spec-
tral profile over the normalized frequency ν′, thus intro-
ducing the spectral moments of the line–integrated emis-
sion by the formula [9]:

µ(n) =

∞∫
−∞

Iξ(ν′;u) ν′ndν′. (3)

The first moment is defined by the velocity distribution
and by the direction of line of observation

µ(1) =
∫

L(u,ξ)

ε0(x) ϑ(x) · dl ≡ V{ε0ϑ}(u,η), (4)

where vector dl is directed along the observation line, η,
and V is a vector Radon transform, which is defined as
follows:

V{ϑ}(u,η) =
∫

L(u,ξ)

ϑ(x) · dl. (5)

The zero moment is a usual Radon transform of the emis-
sivity distribution defined by

µ(0) =
∫

L(u,ξ)

ε0(x)dl ≡ R{ε0}(u, ξ). (6)

Equation (4) is related to the tomography of vector fields
and requires special inversion methods. First of all, let us
consider an inversion of the equation (5). For measure-
ments in some two-dimensional space the unit vector ξ is
given by ξ = (cos θ, sin θ), where θ is the angle between
the positive direction X-axis and the line OA. The inver-
sion problem in this case can be considered in terms of
the vorticity vector function ζ = curl ϑ, which has only
one component ζ = (0, 0, ζ). By using the Helmholtz’s
decomposition theorem [12]

ϑ = curl Ψ + grad Φ, (7)

and some properties of Radon transform [13], the following
result is obtained

V{ϑ}(u,η) = − ∂

∂u
R{ψ}(u,η). (8)

Since ϑ is confined to the x− y-plane, a single component
of the vector potential Ψ in the z-direction exists; i.e. one
may write Ψ = ψez. The equation (8) may be rewritten
in the equivalent form

R{ψ}(u,η) = −
u∫

−∞
V{ϑ}(u′,η)du′. (9)

The details for the deduction of formula (9) can be found
in [10]. If we are given spectroscopic measurement data,
the moments µ(1) = V{ε0ϑ}(u,η) and µ(0) = R{ε0}(u,η)
can be obtained, and an inversion of the vector Radon
transform may be reduced to a scalar Radon inversion of
the following measured data:

R{ψ}(u,η) = −
u∫

−∞
µ(1)(u′,η)du′. (10)

Any algorithm of scalar tomography can now be ap-
plied for determination of the ψ-function. Equation (10)
shows that only the solenoidal component ψ (and hence,
curl Ψ) is determined uniquely from the line–integrated
data. There is no contribution from the irrotational com-
ponent grad Φ into equation (10). In the case of axial
symmetry of plasmas there is no dependence on the unit
vector η in equation (10), and the operator of Radon
transformation R can now be replaced with the opera-
tor of Abel’s transformation. Equation (10) will have the
following form:

A{ψ}(u) = −
u∫

−∞
µ(1)(u′)du′, (11)
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and the potential function ψ, as well-known, can now be
written as follows (see Appendix B):

ψ(r) =
1
π

R∫
r

µ(1)(u) du
(u2 − r2)1/2

· (12)

From the computational viewpoint, formula (12) is very
convenient because it does not require differentiation of
experimental data. It is well-known that differentiation
procedure of noised data is unstable, and special regular-
ization techniques are usually needed. Integral (12) can be
computed by many different ways (see, for instance, [1],
p. 185), but the simplest method used for our computer
simulation is given in Appendix B. Assuming now that
only the solenoidal component of motion is present, the
velocity components are defined as follows:

ϑx =
1
ε0

∂ψ

∂r

y

r
, ϑy = − 1

ε0

∂ψ

∂r

x

r
, |ϑ| =

1
ε0

∂ψ

∂r
· (13)

The function ε0 is obtained as a result of inversion of
equation (6) under the assumption of axial symmetry.

3 Computer simulation and experimental
data analysis

In this section, the results of computer simulation are
given for demonstration of the algorithm. The real ex-
perimental data are also used for velocity profiles recon-
struction. Owing to the model of velocity distribution we
have examined the algorithm using the scheme of measure-
ments as shown in Figure 1. The total number of measure-
ments for 8 chords (that corresponds to real experimental
scheme) is used in the numerical experiments. Two exact
velocity profiles write

ϑ = exp
(−((r − 0.6)/0.3)2

) {
sin(3 π r)

cos(3.5 π r)

and their reconstructions are given in Figure 2. The re-
construction was performed with the data spoilt by some
artificial noise. The noise level was taken to be 2.5% of the
maximum level of measured emission amplitude (spectro-
scopic data). The error of reconstruction depending on
the number of chord integrals is represented in Figure 3.
The discrepancy between exact and reconstructed models
is calculated by the formula:

∆2 =

M∑
i=0

(
|ϑi| − |ϑ̃i|

)2

M∑
i=0

ϑ2
i

,

where summation is performed over all grid points, |ϑi|
and |ϑ̃i| are the values for the model and its reconstruction
at the ith node of the grid. One can observe that the
increase of the number of ray-sums over 15 does not reduce
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Fig. 2. Radial velocity profiles (dimensionless) for the first ex-
act model (· · ·+· · · ) and (· · ·•· · · ) its reconstruction, as well as
for the second exact model (−∗−) and (−◦−) its reconstruc-
tion. Relative errors of reconstruction are 3.27% and 4.71% for
the first and second models, respectively.
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Fig. 3. Error of reconstruction (in per cent) depending on the
number of chord measurements for the first model (· · · ∗ · · · )
and (−×−) for the second one, respectively.

the error of reconstruction anymore. This effect is caused
by the numerical scheme, noise level and by the complexity
of the model employed.

In our experiment, eight chord measurements are per-
formed for two merging counter helicity plasma toroids. It
was reported that the two spheromaks with oppositely di-
rected toroidal fields caused the dynamic magnetic recon-
nection to drive the inner and outer toroidal flow with op-
posite polarity [15]. The chord profiles against normalized
frequency are plotted in Figure 4. The green, red and blue
profiles correspond to the measurements at three different
time moments: 180 µs, 193 µs and 200 µs, respectively.
The poloidal flux contours measured by internal probes
are shown in Figure 5. The velocity profiles calculated by
using the chord measurements are shown in Figure 6. The
normalized radius r = 0.19 corresponds to the radius of
the central coils, R = 65 mm, and r = 1.0 corresponds to
the device radius, R = 340 mm.
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Fig. 4. Eight chord-line spectrum measurements at three
different time moments of plasma evolution: 180 µs, before
(green) the reconnection, 193 µs, at the time (red) and 200 µs,
after it (blue).

 

 

 

Fig. 5. Poloidal flux contours before plasma merging, 180 µs,
at the time of reconnection, 193 µs and after it, 200 µs.

Fig. 6. Radial velocity profiles (dimensionless) at three dif-
ferent time moments: 180 µs (green), 193 µs (red) and 200 µs
(blue).

The renormalization dimensional coefficient for trans-
forming the relative value of velocity distribution ϑ(r) to
the absolute value of V (r) is given by the formula K =
c δν/(δν′ ν0), that is, V (r) = K ϑ(r), where δν = 0.0128 Å
in our experiment, δν′ = 0.035 is the dimensionless fre-
quency step size in our computations, ν0 = 4861 Å is the
frequency of the observation line, and c is the speed of
light.
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4 Conclusion

The numerical method for reconstructing the radial pro-
file of plasma velocity has been described. The method has
been developed by applying the vector Radon transform
to spectroscopic measurement data. The components of
the vector field have been recovered by differentiation of
a single component of the vector potential (stream func-
tion). For the vector potential, ψ, reconstruction technique
based on Abel inversion formula has been used. It should
be noted, though, that the accuracy of the profile determi-
nation by this technique is substantially dependent on the
number of chord measurements and on the actual pro-
file shape. The integral nature of the initial data masks
thin sharp changes if they exist in ψ, and therefore, in ϑ
over the profile. We cannot evaluate the exact effect intro-
duced by data errors into the computation of the veloc-
ity distribution, but it is possible state that contribution
error is not larger than in the corresponding numerical
experiments.

The first author would like to express his gratitude to the staff
of High–Temperature Plasma Center, University of Tokyo, for
their great hospitality.

Appendix A

A.1 The vector Radon transform

If ϑ ∈ L(R2,R2), then vector V- and scalar R-Radon
transforms are related to each other by the following

∂

∂u
V{ϑ}(u,η) = R{ζ}(u,η), (14)

Proof.
Firstly, rewrite the left-hand side of (14) to the equiva-
lent form:

∂

∂u
V {ϑ} (u,η) =

∂

∂u
R{

ϑ · η⊥}
(u,η). (15)

Taking the Fourier transform of the right side and using
the central slice theorem [14], one obtains

F−1
1

{
∂

∂u
R{

ϑ · η⊥}}
(σ,η) =

iσ(2π)1/2F−1
2 {−ϑ1η2 + ϑ2η1}(σϑ)

= (2π)1/2(−iση2F−1
2 {ϑ1}(σϑ) + iση1F−1

2 {ϑ2}(σϑ)

= (2π)1/2

(
−F−1

2

{
∂ϑ1

∂x2

}
(σϑ) + F−1

2

{
∂ϑ2

∂x1

}
(σϑ)

)

= (2π)1/2F−1
2 {ζ}(σϑ) = F−1

1 R{ζ}(ϑ, σ),

where the symbols F−1
2 and F−1

1 denote two- and one-
dimensional direct Fourier transforms, respectively. The
inverse Fourier transform gives the formula (14).

Appendix B

B.1 Evaluation of the equation (11)

Direct and inverse Abel transforms are as follows

g(u) ≡ A{f}(u) = 2

R∫
u

f(r) r dr
(r2 − u2)1/2

f(r) ≡ A−1{g}(r) = − 1
π

R∫
r

g′(u) du
(u2 − r2)1/2

· (16)

Applying (16) to (10) we obtain the following relation

ψ(r) =
1
π

R∫
r

µ(1)(u) du
(u2 − r2)1/2

,

ψ(rj) =
1
π

N∑
i=j

ri+1∫
ri

µ(1)(u) du
(u2 − r2j )1/2

, (17)

where j = 1 · · ·N , the grid {rj} is given with the con-
stant step size ∆r along the radial coordinate. Under the
assumption that µ(1)(u) is sufficiently smooth within the
grid step interval ∆r, the equation (17) is rewritten as
follows

ψ(rj) ≈ 1
π

N∑
i=j

µ(1)(ui)

ri+1∫
ri

du
(u2 − r2j )1/2

=
1
π

N∑
i=j

µ(1)(ui) Iij ,

where the internal integral Iij is

Iij = ln



ri+1

(
1 +

√
1 − r2j /r

2
i+1

)

ri

(
1 +

√
1 − r2j /r

2
i

)

 ·
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